Essay - Published: 2013.11.18 |
DISCLOSURE: If you buy through affiliate links, I may earn a small commission. (disclosures)
**Find the volume of the region bounded above by parabola Z and below by square R **
z = 16 – x2 – y2
R: 0 <= x <= 2, 0 <= y <= 2
Because this is a double integral over a general region problem, the equation is going to look like this:
∫R∫ 16 – x2 – y2 dA
Essentially, we’re finding the integral of the region covered by parabola Z within the boundaries given by R.
Here we use the x, y bounds given in R to replace R in the above function. For this problem, it doesn’t matter which order you choose to integrate, so long as the integration bounds match the integration variable (i.e. use the x bounds when integrating x).
∫0-2∫0-2 16 – x2 – y2 dxdy => ∫0-2 16x – x3 – xy2|0-2 dy
Integrating x gives you:
∫0-2 88/3 – 2y2 dy => 88y/3 + (-2y3)/3 |0-2
Complete the double integral, you should get the answer:
Answer: 160/3
The best way to support my work is to like / comment / share for the algorithm and subscribe for future updates.